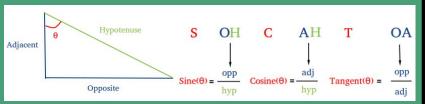

TABLE OF CONTENTS

Vector Addition and Subtraction

<u>Graphical</u>


• head-to-tail method

- adding vectors: A+B = R
- subtracting vectors: A-B = A+(-B)= R
- when solving graphically:
 - o draw arrow from tail of vector A → head of vector B
 - measure magnitude with a ruler
 - measure direction with a protractor

<u>Analytical</u>

SOH-CAH-TOA

- components of a vector
- resultant vector
 - sum of two or more vectors
 - Pythagorean Theorem
- Find angle of resultant vector
 - o tan⁻¹ (opp/adj)

Projectile Motion

Keywords / Main Points

- from the ground
 - \circ $y_i = 0$
- shot horizontally
 - \circ $V_{vi} = 0$
- maximum height
 - \circ $V_{vf} = 0$
- hits the ground

$$\circ$$
 $y_i/y_f = 0$

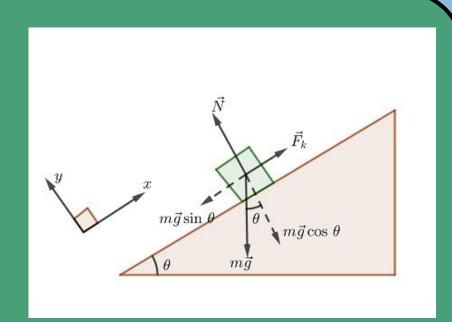
always:

$$t_v = t$$

 horizóntal and vertical motion are independent

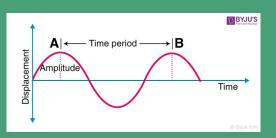
<u>Vertical Motion</u>

- a_y = 9.80 m/s²
 from gravity
- vertical motion is quadratic in time

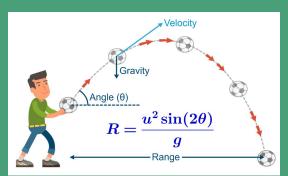

Horizontal Motion

- $\bullet \quad a_x = 0 \text{ m/s}^2$
- horizontal velocity is constant
- horizontal motion is linear in time

Inclined Planes


Inclined Planes

- normal force is perpendicular to the surface
- angle of plane is the same as the angle between the F_N and F_g
 - split F_g into its components
- static/kinetic friction
 - horizontal component of gravity is equal to static friction


Harmonic Motion

- oscillation: moves back and forth between same positions
- periodic motion: each oscillation takes same time
- simple harmonic motion: restorative force proportional to displacement
 - O Hooke's Law: F=-k∆x
- period: time for one oscillation
- frequency: oscillations per second
- period of mass on a string: T=2π√m/k
- pendulum is a pendulum bob on a string
 - \circ simple harmonic motion if θ <15°
 - o period of simple pendulum: T=2π√L/g

Tips and Tricks

- always think of horizontal and vertical motion separately
- some projectile problems must be separated into 2 parts
 - \circ v_{fv} is 0 at the max height first, and when it hits the ground
- Range Formula
 - o only use for level 3 problems (if you use for level 4s, you'll have to
 - derive it)
 - u = v initial

Questions?

Worksheet Time!!

